Monatshefte für Chemie 109, 883-897 (1978)

Beiträge zur Chemie der Pyrrolpigmente, 20. Mitt.¹:

Untersuchungen über das Deprotonierungsgleichgewicht und die Bildung von Metallkomplexen von Gallenpigment-Partialstrukturen

Heinz Falk * und Alfred Leodolter

Institut für Organische Chemie, Universität Wien, A-1090 Wien, Österreich

(Eingegangen 27. September 1977)

On the Chemistry of Pyrrole Pigments, XX.: Investigations on the Deprotonation Equilibrium and the Formation of Metal Complexes of Partial Structures of Bile Pigments

By spectrophotometric measurements in the system $DMSO/H_2O/Me_4NOH$ pK_a -values for several model compounds representing bile pigment partial structures were established. The acidic protons of pyrrole and lactame type nitrogen atoms are removed by bases governed by the electronic properties of the substituents on these ring systems. The pK_a -values for both types lie in the same region. In the pyrromethenones the lower one corresponds to the lactame type NH as was deduced by comparison with specifically methylated derivatives.

The complexation of these ligands is determined by the possibility of removing an acidic proton and achieving a chelate structure by means of an adjacent pyrrolinone type nitrogen atom. Complexes are favoured in the series pyrromethenes > lactim ethers > pyrromethenones. With the latter there are two possibilities: one observed with BF_2 -chelation where the lactime form becomes stabilized, the other one with zink where both acidic centers are involved in the bonding.

Einleitung

In Zusammenhang mit Untersuchungen über Tautomerie, Konfiguration, Konformation und Lichtabsorption von Gallenpigmentpartialstrukturen²⁻⁸ schien es auch von Interesse, das Deprotonierungsverhalten von Modellsystemen systematisch zu studieren. Gleichgewichte dieser Art sind vor allem für eine Hypothese von Bedeutung, nach der auch ein Deprotonierungsschritt in Verbindung mit der Photoreaktion für die spektrale Verschiebung des Phytochroms verantwortlich gemacht wird⁹. Darüber hinaus sind sie für die Fähigkeit dieser Systeme, Metallkomplexe zu bilden, wichtig. Die vorliegende Mitteilung beschäftigt sich mit der Messung der entsprechenden p K_a -Werte von Modellverbindungen, die Gallenpigmentpartialstrukturen repräsentieren. Darauf aufbauend soll versucht werden, ein Bild von den Bindungsmöglichkeiten bei Metallkomplexen in diesen Verbindungsklassen zu entwerfen.

Methodik

Laut Literaturdaten liegen die pK_a -Werte für Amide¹⁰ und Pyrrol¹¹ in der Regel oberhalb von 14, so daß für die Messungen ein geeignetes Lösungsmittel bzw. Lösungsmittelgemisch herangezogen werden muß. Für solche spektrophotometrische Bestimmungen wurden in jüngster Zeit Untersuchungen an dem System $DMSO/H_2O/Me_4$ NOH ausgeführt¹². Sie erlauben eine sichere Korrelation zwischen H_-Werten¹³ und dem Mengenverhältnis DMSO—H₂O.

Für die Chelatbildungsuntersuchungen isolierte man, wenn möglich, die Komplexe, um zumindest für die spektroskopischen Nachweise die Eigenschaften der reinen Species zu kennen.

Ergebnisse und deren Diskussion

I. Das Deprotonierungsgleichgewicht

A. Die Deprotonierung der NH-Gruppe vom Lactamtyp

Im Gegensatz zu Untersuchungen über die Protonierung des einfachsten Gallenpigmentstrukturelements (3-Pyrrolin-2-on)² läßt sich über seine Deprotonierung keine Aussage machen: Die Stelle, an der Deprotonierung erfolgt, ließ sich nicht lokalisieren. Deshalb sind

wir bei unseren Studien von einem 5-Methylenderivat ausgegangen. Ein p K_a -Wert von 15.7 ± 0.4 für 1 zeigt, daß man es hier mit keinen auffälligen Abweichungen vom bekannten Deprotonierungsverhalten¹⁰ von Amiden zu tun hat (z. B. Benzanilid, p $K_a = 16.53$). Die Untersuchung von 5-Arylmethylenpyrrolinonen, die schon mehrfach als aus-

gezeichnete Modellverbindungen gedient hatten^{8,14}, erhärten diesen Eindruck. Die Abb.1 illustriert die ausgeprägte Abhängigkeit der Protonenabgabe des Lactamteils von den elektronischen Eigenschaften des Substituenten am Phenylring.

Elektronenanziehende Substituenten stabilisieren erwartungsgemäß das Anion. Schreitet man in Richtung der Naturstoffanalogie vor, so sollte mit einem σ -Wert von — 0.25 für den 2-Pyrryl-rest¹⁶ auf der

Abb. 1. Korrelation von $\sigma_p(X)^{15}$ mit dem p K_a -Wert von 2-6

Basis der Korrelation in Abb. 1 für ein am Pyrrolring unsubstituiertes Pyrromethenon ein pK_a -Wert von 17,1 folgen. Ein solches Experiment ist aber nicht voraussetzungsfrei zu interpretieren, da ein Pyrromethenon zwei acide Wasserstoffatome aufweist. Deshalb haben wir die

Verbindung 7 untersucht, in der das pyrrolische Wasserstoffatom durch eine Methylgruppe substituiert ist: Mit σ_p (CH₃) = -0,17 und σ (2-Pyrryl) = -0,25¹⁶ ergibt sich unter der Annahme additiven Verhaltens für den 1-Methyl-2-pyrryl-rest ein Wert von -0,42. Dies

führt für 7 mit der Korrelation der Abb. 1 zu einem geschätzten p K_{a} -Wert von 17,4. Der experimentelle Wert, p K_{a} (7) = 17,6 ± 0,1 steht damit in bester Übereinstimmung.

Neben diesen nunmehr trivialen Struktureinflüssen auf die Acidität des Lactam-NH's sind in Hinblick auf die nativen Gallenpigmente drei Fragen zu beantworten:

1. Wie ist der elektronische Einfluß des "Substituenten" Pyrromethen beschaffen, der ja formal an das Partialstrukturelement "Methylenpyrrolinon" geknüpft ist? Hier bringt die pK_a -Messung an Verbindung 8 Klarheit: $pK_a(8) = 19,0 \pm 0,3$. Wie schon bei der Protonierung², besitzt die Partialstruktur "Pyrromethen" eine weitgehende Analogie zum 4-Dimethylaminophenyl-rest. Formal ließe sich demnach diesem Fragment ein σ -Wert von ≈ -0.8 zuordnen.

2. In welcher Weise wird die Acidität des Lactamprotons durch die Möglichkeit zur Ausbildung einer intramolekularen Wasserstoffbrücke beeinflußt? Der Vergleich der p K_a -Werte der beiden geometrisch isomeren (diastereomeren) 2-Pyridyl-Kondensate (Z)- und (E)-9 (17,5 $\pm 0,1$ und 17,3 $\pm 0,1$) lehrt, daß im Gegensatz zur Protonierung³ des Pyridylstickstoffs die Deprotonierung des Lactam-NH kaum von der Wasserstoffbrückenbindung beeinflußt wird.

3. Verursacht die Konjugation des Pyrrolinonteils mit einem gleichartigen Fragment über ein Pyrromethensystem hinweg (Bilatrien-abc) eine starke Absenkung des p K_a -Wertes in der Weise, wie man sie beim Übergang vom Lactam zum Imid (Vinylogie) beobachten kann? [p K_a (Maleinimid) = 10,8 ± 0,2.] Die Antwort gibt die Gegenüberstellung der p K_a -Werte von 4 und 6. Bei letzterem liegt formal ein zum Lactam-Carbonyl vinyloges Carbonylfragment (Ester) vor. Die dadurch hervorgerufene Senkung von 16,7 auf 15,4 ist geringfügig und scheint kaum auf die Vinylogie zurückzuführen sein. Noch deutlicher ausgeprägt ist die Analogie zwischen einem Bilatrien-abc und Modellverbindung 10¹⁷ bezüglich der Vinylogie. Der pK_a^{I} -Wert von 16,0 ± 0,2 unterscheidet sich jedoch kaum von jenem der Verbindungen 4 und 6. Diese Art der vinylogen Wechselwirkung zwischen endständigen Lactamgruppierungen löst also offenbar keine dramatischen Änderungen im Deprotonierungsverhalten des Lactamfragmentes aus.

B. Die Deprotonierung der NH-Gruppe vom Pyrroltyp

Im Deprotonierungsverhalten von Gallenpigmenten tritt (siehe oben) eine wesentliche Komplikation dadurch auf, daß das Proton am pyrrolischen Stickstoffatom von vergleichbarer Acidität zum Lactam-NH sein kann. Unsubstituiertes Pyrrol hat einen p K_a -Wert von 17,5¹¹. Wie eine Messung an 5-Methyl-pyrrol-2-carbonsäureethylester (p $K_a =$ = 17,5 ± 0,1) zeigt, heben die entgegengesetzten elektronischen Effekte von Methylgruppe und Esterfunktion einander auf. Zusätzliche Methylgruppen, wie im 3,4,5-Trimethylpyrrol-2-carbonsäureethylester (p $K_a = 19,0 \pm 0,1$) erhöhen den p K_a -Wert, zusätzliche Esterfunktionen wie im 3,5-Dimethyl-2,4-pyrroldicarbonsäurediethylester (p $K_a =$ = 13,4)¹⁸ senken ihn in der erwarteten Weise ab. Nun kann man dazu übergehen, die Acidität des pyrrolischen Protons in Gallenpigmentpartialstruktursystemen zu untersuchen:

H. Falk und A. Leodolter:

Bei den Pyrromethenen bereitet dies keine Schwierigkeiten, da sie ja nur über ein einziges acides Proton verfügen. So erhält man für **11**, **12** und **13** wiederum den zu erwartenden Effekt, daß nämlich Methylgruppen die Acidität verringern, Estergruppen erhöhen: $pK_a(11) = 21.4$; $pK_a(12) = 18.0 \pm 0.3$; $pK_a(13) = 17.4 \pm 0.5$. Vergleicht man diese Daten mit jenen der oben erwähnten substituierten Pyrrole, so zeigt

Abb. 2. Graphische Bestimmung von pK_a^{I} und pK_a^{II} bei 16

sich, daß der Pyrroleninring mit seiner Möglichkeit zur Wasserstoffbrückenbindung die Acidität des pyrrolischen NH im Pyrromethen kaum beeinflußt.

Die beiden Lactimether 14 und 15 mit $pK_a = 19.5 \pm 0.1$ und 21.1 ± 0.2 stellen eine weitere Basis für jene Partialstrukturen dar. die mehr als ein acides Proton aufweisen: die Pyrromethenone.

Die Abb. 2 illustriert für **16** die Form der Auftragung von H₋ gegen log (I) (I = Indikatorverhältnis), aus deren Grenztangentenabschnitten die Näherungswerte $pK_a^1 = 17,2$ und $pK_a^{11} = 19,2$ folgen. Die Steigung dieser Grenztangenten entspricht jener, die bei Derivaten mit nur einem aciden Proton erhalten wurde. Bezüglich der Zuordnung hilft einerseits der Vergleich mit den beiden pK_a -Werten einer am Pyrrolring polyalkylierten Verbindung, wie **17**: Für diese erhält man $pK_a^{I} = 17,8 \pm 0,3$ und $pK_a^{II} = 21,5 \pm 0,5$ — bei der Alkylierung des Pyrrolrings wird nur pK_a^{II} in die Richtung geringerer Acidität verschoben (vgl. auch $14 \rightarrow 15$). Andererseits ist pK_a^{II} von 16 mit dem pK_a -Wert von 14 und pK_a^{I} mit jenem von 7 vergleichbar, wodurch die oben abgeleitete Zuordnung unterstützt wird.

Extrapoliert man von dem oben erhaltenen Datenmaterial über Partialstruktursysteme auf das chromophore System der Bilivioline (18) (das sich auch in anderem Zusammenhang als ausgezeichneter Testfall bewährt hat⁴), so kann man zwanglos die beiden gemessenen pK_a -Werte zuordnen: $pK_a^{I} = 17.4 \pm 0.4$ charakterisiert die Deprotonierung am Lactam-NH und $pK_a^{II} = 21.0 \pm 0.5$ jene am Pyrromethen-NH.

C. Die 3,4-Dihydrolactamgruppierung

Im Zusammenhang mit dem Deprotonierungsverhalten der beiden Phytochromformen⁹ ist es auch von Interesse. die Deprotonierung von 3.4-Dihydrolactamderivaten zu untersuchen. Der Vergleich von Maleinimid (p $K_a = 10.8 \pm 0.1$) mit dem Bernsteinsäureimid (p $K_a = 9.66$)¹⁹ legt für den Übergang zum Dihydrosystem eine Zunahme der Acidität nahe. Tatsächlich zeigt **19**²⁰ einen p K_a^1 -Wert von 12,9 ± 0,2, d. h. einen

Anstieg der Acidität um etwa 4 pK-Einheiten*. Es ist demnach durchaus möglich, daß einerseits durch die Konjugation mit einem zweiten Lactamfragment (vinyloges Imid, siehe jedoch oben!) andererseits auch aus den besonderen Verhältnissen der Proteinumge-

^{*} Dieser starke Effekt kommt wahrscheinlich dadurch zustande, daß durch die Reduktion zum Dihydroderivat die Wirkung der beiden Alkylgruppen am Lactamring aufgehoben wird.

bung beim Phytochrom eine Absenkung bis auf p $K_a \approx 10.4$ gefunden wird⁹. Dieser Wert ist — wenn man mit den Daten entsprechender Pyrrole vergleicht (siehe oben) — der Dihydrolactamfuntion zuzuordnen.

II. Deprotonierung unter Komplexbildung

Über Metallkomplexe von nativen und synthetisch abgewandelten Gallenpigmenten gibt es mehrere Arbeiten. Sie reichen von der präparativen Darstellung mancher Komplexe über die röntgenographische Strukturermittlung bis zur spektroskopischen Charakterisierung und analytischen Anwendung²¹⁻²⁷. Diese Studien wurden vor allem an Bilatrienen-abc und Biladienen-a, c ausgeführt. Bei der Formulierung von Strukturen dieser Systeme wurde mit der Art der Bindung und der Tautomerie des Ligandensystems in der Regel großzügig umgegangen, so daß es uns wünschenswert erschien, aus der Untersuchung der Partialstruktursysteme einige Grundzüge des Komplexierungsverhaltens freizulegen.

Von den Komplexen des Partialstruktursystems Pyrromethen sind zwei Strukturtypen beschrieben worden²⁵, deren Bildung von Substitutionsmuster und Bedingungen abhängt: Der Typ I konnte vor allem im Fall des Pyrromethens mit Esterfunktionen und z.B. mit Nickel oder Zink als Komplexpartner isoliert werden. Komplexe vom Typ II sind mit Liganden von stark variierendem Substitutionstyp und mit sehr vielen Ionen dargestellt worden²⁸. Trotz des außerordentlich hohen pK_a -Wertes der Pyrromethene (z.B. 11, 12, 13) ist die Bildungstendenz — verursacht vom offenbar außerordentlich hohen Energiegewinn bei der Chelatbildung — groß. So genügt meist 0.1N-NH₃ oder auch aliphatisches tert. Amin, um das Gleichgewicht zwischen freiem Methen + Metallsalz vollständig auf die Seite des Chelates zu drängen. Die absorptionsspektrometrischen Eigenschaften dieser Chelate sind ebenfalls gut untersucht. Je nach Koordinationstyp findet man eine bathochrome Verschiebung der "Hauptbande" in der Größenordnung von 20 bis 70 nm.

Entsprechend verhält sich jenes Partialstruktursystem, dessen Typus zwischen Pyrromethenen und Pyrromethenonen liegt, nämlich jenes der Pyrromethenonlactimether. 14 und 15 geben einerseits die Difluoroborylchelate 20 und 21 und andererseits die Zinkchelate 22 und 23, wobei ersterer sehr instabil ist. Die bathochrome Verschiebung der "Methenbande" beträgt für $14 \rightarrow 20$ 93 nm, für $15 \rightarrow 21$ 106 nm, für $14 \rightarrow 22$ 76 nm und für $15 \rightarrow 23$ 72 nm. Die Struktur dieser (präparativ isolierten) Systeme folgt unmittelbar aus den analytischen und spektroskopischen Daten.

Gemeinsam mit den Pyrromethenchelaten ist diesen Lactimätherkomplexen auch die ausgeprägte Fluoreszenz: Die *Stokes*-Verschiebungen betragen bei **20** und **21** etwa 10 nm, bei den Zinkchelaten **22** und **23** etwa 50 nm. Die Bildung dieser Komplexe ist wohl gegenüber jenen der Pyrromethene etwas erschwert, verläuft aber immer noch glatt.

Schließlich gibt auch das Modellsystem (Z)-9, das ebenfalls nur über ein einziges acides Proton verfügt, ein Zinkchelat (24).

Auch unter drastischen Bedingungen konnten keine Komplexe der oben beschriebenen Typen mit 7 und einem Lactam-N-methylderivat (25) erhalten werden. Es sind also für die Bildung der Komplexe jeweils eine Stelle für die kovalente Bindung des Metalls und ein Zentrum notwendig, das befähigt ist, in einer entsprechenden geometrischen Anordnung eine Nebenvalenz zu betätigen. Hiebei kann die kovalente Bindung je nach Struktur des Liganden sowohl vom Stickstoff des Pyrrolringes als auch des Lactamringes ausgehen. Die wesentliche Triebkraft des Komplexierungsgleichgewichtes liegt in der Möglichkeit zur Chelatbildung.

Eine Komplikation in der Untersuchung des Komplexierungsverhaltens war — wie schon bei der Deprotonierung — für die Pyrromethenone zu erwarten, da diese ja über zwei acide Protonen wenig unterschiedlicher Acidität verfügen. Zudem wird die Ausbildung einer Nebenvalenz, die zum Chelat führen könnte, durch die doch extreme Lage des Lactam—Lactim-Gleichgewichtes² erschwert.

Bei keinem der Pyrromethenone (z. B. 16, 17 oder 26) konnten wir einen Difluoroboryl- oder Zinkkomplex in Substanz isolieren, so daß wir hier ganz auf den Vergleich der Absorptionsspektren mit jenen der oben beschriebenen Systeme "fixierter Struktur" angewiesen waren. In wäßrigem oder alkoholischem Milieu wurde für die genannten Pyrromethenone auch bei sehr hohen Konzentrationen an Zinkacetat und Base keine Änderung der Absorptionsspektren festgestellt. die auf eine Komplexierung hindeuten würde. Erst im aprotischen Lösungsmittel beobachtet man diesbezügliche Veränderungen. In Chloroform gibt

z. B. 26 mit BF₃ · Et_2 O das dem Protonierungsprodukt² analoge Lewisaddukt an der Carbonylgruppe ($\lambda^{26} = 411 \text{ nm}$; $\lambda^{26 \text{ BF}_3} = 480 \text{ nm}$; $\lambda^{26 \text{ H}^+} = 470 \text{ nm}$). Zusatz von Hünigbase bedingt eine weitere bathochrome Verschiebung dieser Bande auf 515 nm. Der Vergleich dieser Verschiebung (104 nm) mit jener, die bei $15 \rightarrow 21$ (106 nm) zusammen mit der charakteristischen Fluoreszenz auftritt (Emissions- und Excitationsspektren der beschriebenen Reaktionsmischung sind praktisch deckungsgleich mit jenen von 21), lassen den Schluß zu, daß unter drastischen Bedingungen mit dem Bindungspartner = BF₂ das Chelat der Lactimform von 26 gebildet wird. Wie angedeutet, ist aber die Stabilität dieses Komplexes für seine Isolierung nicht ausreichend.

Mit Zink als Metallpartner erzielt man erst in stark polaren aprotischen Lösungsmitteln (wie DMF und DMSO) spektroskopisch auswertbare Resultate: In DMSO gibt **26** nach Zusatz von Hünigbase und Zinkacetat eine Bande bei 453 nm, also eine bathochrome Verschiebung um 42 nm. Da die Verschiebung beim Lactimether 15 zum Zinkchelat 23 72 nm beträgt, ist es sehr unwahrscheinlich, daß es sich dabei um das Chelat der Lactimform handelt. Der Vergleich mit dem Spektrum des Deprotonierungsproduktes zeigt, daß es sich auch nicht nur um ein Anion handelt: Dieses absorbiert im vorgegebenem Milieu bei 506 nm. Da die N-methylierten Systeme 7 und 25 keine diesbezügliche Reaktion zeigen, folgt, daß bei der Verwendung von Zink an Stelle des Difluoroborylrestes ein Komplex gebildet wird, dem wir die Struktur III zuschreiben (X = Acetat-ion bzw. Solvat). Leider erlaubte auch bei diesem System die mangelnde Stabilität keine präparative Darstellung.

Zusammenfassend läßt sich also für Gallenpigmente aus der Untersuchung von Partialstrukturen extrapolieren, daß jedes acide Zentrum dieses Ligandsystems für eine Komplexbildung mit einem Metall-ion geeigneter Wertigkeit in Frage kommt; dies insbesondere dann, wenn durch die Nachbarschaft von Stickstoffatomen des Pyrrolenintyps die Ausbildung von Chelatstrukturen begünstigt wird. Die Stabilisierung der Lactimform für diesen Zweck dürfte aber in den seltensten Fällen ausreichend sein.

Dank

Herrn Mag. F. Neufingerl danken wir sehr herzlich für die Fluoreszenzmessungen. Das EM-320-NMR-Spektrometer wurde aus Mitteln des Jubiläumsfonds (Projekt Nr. 996) der Oesterr. Nationalbank beschafft. Die vorliegende Untersuchung wurde durch den Fonds zur Förderung der wissenschaftlichen Forschung (Projekt Nr. 2732) finanziell gefördert.

Experimenteller Teil

Die Schmelzpunkte bestimmte man mit einem Kofler-Heiztischmikroskop, sie sind unkorrigiert. UV-, NMR- und M-Spektren wurden mit den CARY-15-, EM-360- und CH-7-Spektrometern aufgenommen. Alle Verbindungen lieferten zufriedenstellende Analysenwerte. Die pK-Messungen führte man spektrophotometrisch, wie bei 2,12 beschrieben, aus wobei auf Ausschluß von Luft geachtet wurde. Die Auswertung erfolgte wie in Abb. 2 ersichtlich und wie auch schon in Lit.² im Prinzip beschrieben.

Die Darstellung und Eigenschaften der folgenden Verbindungen sind in der Lit. enthalten: 1²⁹, 2¹, 4¹, 5¹, 7¹, 8³, 9³, 11³⁰, 12³¹, 13³², 15¹, 16¹, 17²⁹, 18², 21¹, 26⁵. (Z)-4-Ethyl-3-methyl-5-(4-methoxyphenylmethylen)-3-pyrrolin-2-on $[3; C_{15}H_{17}NO_2]$

Die Darstellung erfolgte durch basische Kondensation von 4-Ethyl-3methyl-3-pyrrolin-2-on³³ mit 4-Methoxybenzaldehyd in Analogie zu Lit.³⁴; Ausb. 50 % d. Th., Schmp. 153-154°.

NMR (CDCl₃, δ, 60 MHz): 7,93 (breit, NH), 7,37 (Schwerpunkt des AA'BB'-Systems), 6,00 (s, -CH =), 3,77 (s, OCH_3), 2,49 (q, J = 7 Hz, CH_2CH_3), 1,90 (s, CH_3 , 1,13 (t, J = Hz, CH_2CH_3).

IR (CHCl₃): $\tilde{v}_{max} = 1690 \text{ cm}^{-1}$.

(Z)-4-Ethyl-3-methyl-5-(4-methoxycarbonyl-phenylmethylen)-3-pyrrolin-2-on [6; C₁₆H₁₇NO₃]

Darstellung wie unter 3 angegeben unter Verwendung von 4-Formylbenzoesäure und nachfolgende Fischersche Veresterung mit MeOH; Ausb. 30 % d. Th., Schmp. 193-195°.

NMR (CDCl₃, δ, 60 MHz): 8,25 (breit, NH), 7,25 (Schwerpunkt des AA'BB'-Systems), 6,07 (s, --CH =), 3,93 (s, OCH₃), 2,55 (q, $J = 7 \text{ Hz}, \text{CH}_2\text{CH}_3$), 1,94 (s, CH_3), 1.22 (t, J = 7 Hz, CH_2CH_3).

IR (CHCl₃): $\tilde{v}_{max} = 1710, 1690 \text{ cm}^{-1}$.

(Z)-4-Ethyl-3-methyl-2-methoxy-5-(pyrrolyl-2-methylen)-5H-pyrrol $[14: C_{13}H_{16}N_{2}O]$

280 mg (1,4 mMol) 16 wurden in 25 ml absol. CH₂Cl₂ gelöst, mit 210 mg (1,45 mMol) Trimethyloxoniumtetrafluoroborat versetzt und 6 Stdn. unter Argon bei Raumtemp. gerührt. Ausschütteln mit K₂CO₃-Lösung, Waschen mit ${
m Wasser}$ und ${
m Trocknen}$ über ${
m Na}_2{
m SO}_4$ gab nach Abdampfen und Chromatographie an Kieselgel (CHCl₃/CH₃OH = 30/1) 150 mg (50 % d. Th.) 14; Schmp. 66° (Hexan).

NM[']R (CDCl₃, δ, 60 MHz): 11,1 (breit, NH), 7,00 (m, H^{5'}), 6,48 (m, H^{3'}, H^{4'} und s, -CH = (4,07) (s, OCH_3), 2,50 (q, J = 7 Hz, CH_2CH_3), 1,89 (s, CH_3), 1,15 $(t, J = 7 \text{ Hz}, \text{CH}_2\text{CH}_3).$

N, N'-Difluoroboryl-4-ethyl-3-methyl-2-methoxy-dipyrryl-(2,2')-methen $[20; C_{13}H_{15}BF_{2}N_{2}O]$

Die Darstellung aus 14 erfolgte analog zu Lit.35; Ausb. 88 % d. Th., gelbrote Kristalle, Schmp. 127-128°.

NMR (CDCl₃, δ , 60 MHz): 7,42 (s-artig, H^{5'}), 6,90 (s, --CH =), 6,77 (m, H^{3'}). $6,33 \text{ (m, H}^4), 4,48 \text{ (s, OCH}_3), 2,45 \text{ (q, } J = 7 \text{ Hz, CH}_2\text{CH}_3), 1,95 \text{ (s, CH}_3), 1,15 \text{ (t, h)}$ $J = 7 \operatorname{Hz}, \operatorname{CH}_2 \operatorname{CH}_3$).

UV-VIS $(\vec{E}tO\ddot{H})$: $\lambda_{max} = 475 \text{ nm} \ (\varepsilon = 24500)$. MS (70 eV, 25°): m/e (%) = 264 (M⁺, 65), 249 (100), 234 (25), 229 (17).

Bis-[3-ethyl-5-methoxy-4-methyl-dipyrryl-(2,2')-metheno]-zink $[22; C_{26}H_{30}N_4O_2Zn]$

110 mg (0,5 mMol) 14 löste man in 30 ml MeOH, gab 2 ml Ethyldiisopropylamin und 20 ml gesätt. methanol. Zinkacetatlösung zu und kochte 10 Min. unter Rückfluß (Argon). Nach teilweisem Eindampfen schieden sich orangerote Kristalle ab, die aus MeOH/Hexan/Zinkacetat umkristallisiert wurden; Ausb. 40 % d. Th., Schmp. 80--85°.

MS $(70 \text{ eV}, 25^{\circ})$: M = 472 (3%), base peak 72.

UV/VIS (MeOH): $\lambda_{max} = 458 \text{ nm}$ ($\epsilon = 50000$), in DMSO 459 nm.

Beiträge zur Chemie der Pyrrolpigmente

Nr.	$\lambda_{\max}(\mathrm{H}A)$ (nm)	$\lambda_{\max}(A^{-}) \atop (\operatorname{nm})$	$\epsilon_{\mathrm{H}A}/\epsilon_{A^{-}}$
1	283	346	0.30
2	396	350	0.70
$\tilde{3}$	356	391	0.60
4	337	397	0.68
5	336	413	0.80
6	341	420	1.20
7	383	403	0.78
8	528	497	1.50
(Z)-9	341	416	0.55
(E)-9	309	410	0.60
1037	360	420	0.90
11	444	483	3.0
12	412	472	3.0
13	455	488	3.0
14	382	465	2,5
15	412	482	2,0
16	383	458	$1,1 (A^{})$
17	410	506	$0.5(A^{-})$
		485	$0.5 (A^{})$
18	545	590	$0.6(A^{-})$
		610	$0.5 (A^{})$
19	326	353	0,90
Maleinimid	275	325	0.70
5-Methylpvrrol-2-			
carbonsäureethylester	278	298	1,10
3.4.5-Trimethylpyrrol-2-			
carbonsäureethylester	286	305	1,10

Tabelle 1. Spektroskopische Daten für die pK-Messungen

 $Bis_{-[3,4'-diethyl-4,3',5'-trimethyl-5-methoxy-dipyrryl-(2,2')-metheno]-zink [23: C_{34}H_{44}N_4O_2Zn]$

Darstellung wie bei **22** beschrieben; Ausb. 70 % d. Th., Schmp. 130–135° MS (70 eV, 25°): M = 606 (3%), base peak 72. UV/VIS (*EtOH*): $\lambda_{max.} = 494$ nm ($\varepsilon = 54000$), in *DMSO* 496 nm.

 $\begin{array}{l} Bis-[3.4-dimethyl-5-(pyridyl-2-methylen)-3-pyrrolin-2-ono]-zink\\ [\mathbf{24}: C_{24}H_{22}N_4O_2Zn] \end{array}$

100 mg (0.5 mMol) (Z)-9 löste man in 3,5 ml DMSO (p. A.), versetzte man 90 mg (0.55 mMol) wasserfr. Zinkacetat und erwärmte, bis alles gelöst war. Nach 5stdg. Stehen im Eisschrank filtrierte man, wusch die Kristalle mit 2 ml kaltem DMSO und trocknete im Vak.; Ausb. 40 mg (34 % d. Th.), Schmp. 260 (Zers.).

NMR ($DMSO-d_6$, δ , 60 MHz): 7,78 (m, 3 H), 7,22 (m, 1 H), 6,05 (s, --CH =), 2,13 (s, CH₃⁴), 1.80 (s, CH₃³).

58 Monatshefte für Chemie, Vol. 109/4

IR (CHCl₃): $\tilde{\nu}_{max.} = 1690 \text{ cm}^{-1}$.

UV/VIS $(\tilde{E}t0H)$: $\lambda_{max} = 385 \text{ nm}$ ($\varepsilon = 27200$), in *DMSO* 396 nm.

MS (70 eV, 180°): m/e (%) = 462 (M^{+} , 76), 447 (15), 384 (28), 263 (21), 199 (100), 185 (21), 171 (25), 156 (27), 144 (30), 118 (20), 91 (22), 78 (28), 49 (15), 43 (18).

3-{5-[(4-Ethyl-1,3-dimethyl-5-oxo-3-pyrrolin-2-yliden)-methyl]-2,4-dimethyl-3pyrrolyl}-propionsäuremethylester [25; C₁₉H₂₆N₂O₃]

Die Darstellung erfolgte in Analogie zu Lit. ²⁹: Aus 20 mg 2,4-Dimethylpyrrol-3-propionsäuremethylester und 20 mg 4-Ethyl-1,3-dimethyl-5-brommethylen-3-pyrrolin-2-on; Ausb. 2 mg (7 % d. Th.) gelbe Kristalle, Schmp. 118—120°.

MS (70 eV, 100°): m/e (%) = 330 (M⁺, 100), 315 (8), 299 (8), 257 (45), 227 (14), 194 (30).

UV/VIS (*Et*OH): $\lambda_{max.} = 411 \text{ nm}$ ($\varepsilon = 30\,000$), 260 nm ($\varepsilon = 15\,000$).

4-Ethyl-1,3-Dimethyl-5-brommethylen-3-pyrrolin-2-on [C₉H₁₂BrNO]

216 mg (1 mMol) 1 löste man in einer Mischung von 10 ml 4*N*-NaOH und 2 ml *Et*OH und versetzte mit 0,2 ml (2,1 mMol) Dimethylsulfat in der Wärme. Nach kurzem Aufkochen ließ man abkühlen, filtrierte die ausgeschiedenen Kristalle ab und chromatographierte auf Kieselgeldünnschichtplatten³⁶ (CHCl₃/*Me*OH = 30/1). Ausb. 133 mg (57 % d.Th.). Schmp. 101° (Subl. ab 94°). NMR (CDCl₃, δ , 60 MHz): 5,87 (s. -CH =); 3,47 (s. NCH₃), 2,40 (q. J = 7 Hz, CH₂CH₃), 1,87 (s. CH₃), 1,10 (t. J = 7 Hz, CH₂CH₃). MS (70 eV, 20°): $M^+ = 230$.

Tab. 1 enthält die für die Messung des Deprotonierungsverhaltens wesentlichen spektroskopischen Daten.

Literatur

- ¹ 19. Mitt.: H. Falk, A. Leodolter und G. Schade, Mh. Chem. 109, 183 (1978).
- ² H. Falk, S. Gergely, K. Grubmayr und O. Hofer, Ann. Chem. 1977, 565.
- ³ H. Falk und K. Grubmayr, Mh. Chem. 108, 625 (1977).
- ⁴ H. Falk, S. Gergely, K. Grubmayr und O. Hofer, Z. Naturforsch. **32b**, 299 (1977).
- ⁵ H. Falk, K. Grubmayr, G. Höllbacher. O. Hofer, A. Leodolter, F. Neufingerl und J. M. Ribó, Mh. Chem. 108, 1113 (1977).
- ⁶ H. Falk, S. Gergely und O. Hofer, Mh. Chem. 105, 1004 (1974).
- 7 H. Falk und O. Hofer, Mh. Chem. 106, 97 (1975).
- ⁸ H. Falk, K. Grubmayr, O. Hofer und F. Neufingerl, Mh. Chem. 106, 991 (1975).
- 9 S. Grombein, W. Rüdinger und H. Zimmermann, Z. Physiol. Chem. 356, 1709 (1975).
- ¹⁰ R. B. Homer und C. D. Johnson, in: The Chemistry of Amides (J. Zabicky, Hrsg.), S. 187. London: Interscience. 1970.
- ¹¹ G. Yagil, Tetrahedron 23, 2855 (1967).
- ¹² R. A. Cox und R. Stewart, J. Amer. Chem. Soc. 98, 488 (1976).
- ¹³ K. Bowden, Chem. Rev. 66, 119 (1966).
- ¹⁴ H. Falk, O. Hofer und A. Leodolter, Mh. Chem. 107, 907 (1976).

- ¹⁵ J. E. Leffler und E. Grunwald, Rates and Equilibria of Organic Reactions, S. 173. New York: Wiley. 1963.
- ¹⁶ H. H. Jaffé und H. L. Jones, Adv. Heterocycl. Chem. 3, 209 (1964).
- ¹⁷ H. Falk, K. Grubmayr und T. Schlederer, Mh. Chem., im Druck.
- ¹⁸ A. Gossauer, Die Chemie der Pyrrole, S. 130. Berlin-Heidelberg-New York: Springer. 1974.
- ¹⁹ H. S. Simms, J. Chem. Phys. **32**, 1121 (1928).
- ²⁰ A. Gossauer, M. Blacha und W. S. Sheldrick, J. C. S. Chem. Commun. 1976, 764; für die Überlassung einer Substanzprobe von 19 danken wir Herrn Prof. Gossauer sehr herzlich.
- ²¹ R. A. Velapoldi und O. Menis, Clin. Chem. 17, 1165 (1971).
- ²² D. W. Hutchinson, B. Johnson und A. J. Knell, Biochem. J. 133, 399 (1973).
- ²³ J. Subramanian, J. H. Fuhrhop, A. Salek und A. Gossauer, J. Magnet. Reson. 15, 19 (1974).
- ²⁴ J. H. Fuhrhop, P. K. W. Wasser, J. Subramanian und U. Schrader, Ann. Chem. 1974, 1450.
- ²⁵ J. H. Fuhrhop, A. Salek, J. Subramanian, C. Mengersen und S. Besecke, Ann. Chem. 1975, 1131.
- ²⁶ G. Stuckmeier, U. Thewalt und J. H. Fuhrhop, J. Amer. Chem. Soc. 98, 278 (1976).
- ²⁷ J. V. Bonfiglio, R. Bonnett, M. B. Hursthouse und K. M. A. Malik, J. C. S. Chem. Commun. 1977, 83.
- ²⁸ Lit. ¹⁸, S. 180.
- ²⁹ J. O. Grunwald, R. Cullen, J. Bredfeldt und E. R. Strope, Org. Prep. & Proc. Int. 7, 103 (1975).
- ³⁰ A. W. Johnson, I. T. Kay, E. Markham, R. Price und K. B. Shaw, J. C. S. 1959, 3416.
- ³¹ A. Treibs, E. Herrmann, E. Meissner und A. Kuhn, Ann. Chem. **602**, 153 (1957).
- ³² F. C. March, D. A. Couch, K. Emerson, J. E. Ferguson und W. T. Robinson, J. chem. Soc. 1971 A, 440.
- ³³ H. Plieninger und J. Kurze, Ann. Chem. 680, 60 (1965).
- ³⁴ H. Plieninger, H. Bauer und A. R. Katritzky, Ann. Chem. 654, 165 (1962).
- ³⁵ H. Falk, O. Hofer und H. Lehner, Mh. Chem. 105, 169 (1974).
- ³⁶ Vorschrift von K. Grubmayr, bislang unveröffentlicht.
- ³⁷ Meßergebnisse von T. Schlederer.